Robust Statistical Methods for Automated Outlier Detection

نویسنده

  • R. Jee
چکیده

The computational challenge of automating outlier, or blunder point, detection in radio metric data requires the use of nonstandard statistical methods because the outliers have a deleterious effect upon standard least squares methods. The particular nonstandard methods most applicable to the task are the robust statistical techniques that have undergone intense development since the 1960s. These new methods are by des@ more resistant to the effects of outliers than standard methods. Because the topic may be unfamiliar, a brief introduction to the philosophy and methods of robust statistics is presented. Then the application of these methods to the automated outlier detection problem is detailed for some specific examples encountered in practice, July-September 1987

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Face Detection with methods based on color by using Artificial Neural Network

The face Detection methodsis used in order to provide security. The mentioned methods problems are that it cannot be categorized because of the great differences and varieties in the face of individuals. In this paper, face Detection methods has been presented for overcoming upon these problems based on skin color datum. The researcher gathered a face database of 30 individuals consisting of ov...

متن کامل

PCA leverage: outlier detection for high-dimensional functional magnetic resonance imaging data.

Outlier detection for high-dimensional (HD) data is a popular topic in modern statistical research. However, one source of HD data that has received relatively little attention is functional magnetic resonance images (fMRI), which consists of hundreds of thousands of measurements sampled at hundreds of time points. At a time when the availability of fMRI data is rapidly growing-primarily throug...

متن کامل

Simultaneous robust estimation of multi-response surfaces in the presence of outliers

A robust approach should be considered when estimating regression coefficients in multi-response problems. Many models are derived from the least squares method. Because the presence of outlier data is unavoidable in most real cases and because the least squares method is sensitive to these types of points, robust regression approaches appear to be a more reliable and suitable method for addres...

متن کامل

Outlier detection for high-dimensional data

Outlier detection is an integral component of statistical modelling and estimation. For highdimensional data, classical methods based on the Mahalanobis distance are usually not applicable. We propose an outlier detection procedure that replaces the classical minimum covariance determinant estimator with a high-breakdown minimum diagonal product estimator. The cut-off value is obtained from the...

متن کامل

Detecting outlier samples in microarray data.

In this paper, we address the problem of detecting outlier samples with highly different expression patterns in microarray data. Although outliers are not common, they appear even in widely used benchmark data sets and can negatively affect microarray data analysis. It is important to identify outliers in order to explore underlying experimental or biological problems and remove erroneous data....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003